
Jeremy Morrell blog sketches about rss

Oct 22, 2024

A Practitioner's Guide to Wide Events

Adopting Wide Event-style instrumentation has been one of the highest-leverage changes I’ve made in my

engineering career. The feedback loop on all my changes tightened and debugging systems became so much

easier. Systems that were scary to work on suddenly seemed a lot more manageable.

Lately there have been a lot of good blog posts on what “Wide Events” mean and why they are important. Here are

some of my recent favorites:

All you need is Wide Events, not “Metrics, Logs and Traces” by Ivan Burmistrov

Observability wide events 101 by Boris Tane

Is it time to version Observability? (Signs point to yes) by Charity Majors

The tl;dr is that for each unit-of-work in your system (usually, but not always an HTTP request / response) you emit

one “event” with all of the information you can collect about that work. “Event” is an over-loaded term in telemetry

so replace that with “log line” or “span” if you like. They are all effectively the same thing.

Charity Majors has been promoting this approach lately under the name “Observability 2.0”, creating some new

momentum around the concept, however, it is not a new idea. Brandur Leach wrote about “Canonical Log Lines”

both on his own blog in 2016 and as used by Stripe in 2019. And AWS has recommended it as a best-practice

for ages.

Okay… I think I get the idea… but how do I do “wide events”?

This is where I find a lot of developers get tripped up. The idea sounds good in theory, and we should totally try

that one day! But I have this stack of features to ship, that bug that’s been keeping me up at night, and 30 new AI

tools that came out yesterday to learn about. And like… where do you even start? What data should I add?

Like anything in software, there are a lot of options for how to approach this, but I’ll talk through one approach

that has worked for me.

We’ll cover how to approach this in tooling and code, an extensive list of attributes to add, and I’ll respond to

some frequent objections that come up when discussing this approach.

For this post we’ll focus on web services, but you would apply a similar approach to any workload.

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 1/32

https://jeremymorrell.dev/
https://jeremymorrell.dev/blog
https://jeremymorrell.dev/sketches
https://jeremymorrell.dev/about
https://jeremymorrell.dev/rss.xml
https://isburmistrov.substack.com/p/all-you-need-is-wide-events-not-metrics
https://bsky.app/profile/isburmistrov.bsky.social
https://boristane.com/blog/observability-wide-events-101/
https://twitter.com/boristane
https://charity.wtf/2024/08/07/is-it-time-to-version-observability-signs-point-to-yes/
https://bsky.app/profile/mipsytipsy.bsky.social
https://jeremymorrell.dev/blog/minimal-js-tracing/
https://bsky.app/profile/mipsytipsy.bsky.social
https://www.honeycomb.io/blog/one-key-difference-observability1dot0-2dot0
https://twitter.com/brandur
https://brandur.org/canonical-log-lines
https://stripe.com/blog/canonical-log-lines
https://aws.amazon.com/builders-library/instrumenting-distributed-systems-for-operational-visibility/#Request_log_best_practices
https://aws.amazon.com/builders-library/instrumenting-distributed-systems-for-operational-visibility/#Request_log_best_practices

Choose your tools

We will need some way to instrument your code (traces or structured log lines) and somewhere to send the

instrumentation to in order to query and visualize it.

This approach is best paired with a tool that lets you query your data in quick iterations. I like Honeycomb for this,

but any Observability tool backed by a modern OLAP database is likely going to work in a pinch.

Honeycomb has Retriever

DataDog has Husky

New Relic has NRDB

Baselime uses ClickHouse

SigNoz uses ClickHouse

Honeycomb, New Relic, and DataDog built their own columnar OLAP data stores, though now with the availability

of ClickHouse, InfluxDB IOx, Apache Pinot, and DuckDB there are new Observability tools popping up all the time.

If you aren’t constrained, I highly recommend defaulting to using OpenTelemetry and Honeycomb. Your life will

be easier.

However even if you are stuck in a corporate environment with a strong allergy to technology built after 2010 you

can leverage log search tools like ElasticSearch in a pinch. Stripe’s blog post goes over how to use Splunk for this.

In any tool you want to focus on getting proficient at 3 core techniques in order to sift through your events. The

faster you are able to apply these, iterate, and ask questions of your data, the better you’ll be able to debug issues

and see what your system is really doing. When observability folks refer to “slicing and dicing” data, this is what

they are generally referring to. I’ll represent queries using a made-up SQL dialect, but you should be able to find

equivalents in your tool’s query language.

Visualizing

Existing in a human body comes with its fair share of downsides, but the human visual cortex is really, really good

at recognizing patterns. Give it a fighting chance by getting really good at summoning visualizations of the data

your system is emitting. COUNT, COUNT_DISTINCT, HEATMAP, P90, MAX, MIN, Histogram. Learn to leverage whatever

graphs your tool makes available to you. Practice it. Get fast.

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 2/32

https://www.honeycomb.io/
https://www.honeycomb.io/
https://www.honeycomb.io/resources/why-we-built-our-own-distributed-column-store
https://www.datadoghq.com/
https://www.datadoghq.com/blog/engineering/introducing-husky/
https://newrelic.com/
https://docs.newrelic.com/docs/data-apis/get-started/nrdb-horsepower-under-hood/
https://baselime.io/
https://boristane.com/talks/observability-with-clickhouse/
https://signoz.io/
https://clickhouse.com/blog/signoz-observability-solution-with-clickhouse-and-open-telemetry
https://aws.amazon.com/compare/the-difference-between-olap-and-oltp/
https://clickhouse.com/
https://www.influxdata.com/blog/influxdb-engine/
https://pinot.apache.org/
https://duckdb.org/
https://opentelemetry.io/
https://www.honeycomb.io/
https://stripe.com/blog/canonical-log-lines

Grouping

With each new annotation that we add to our wide events, we create another dimension along which we can slice

our data. GROUP BY allows us to look along that dimension and see if the values along that dimension match

our expectations.

GROUP BY instance.id

GROUP BY client.OS, client.version

Filtering

Once we’ve narrowed in one dimension that is interesting, we usually want to dig further into that data. Filtering

down so that we’re only looking at data from one endpoint, or from one IP address, or sent by the iOS app, or only

from users with a specific feature flag turned on allows us to narrow our focus to a very specific segment of traffic.

WHERE http.route = "/user/account"

WHERE http.route != "/health"

WHERE http.user_agent_header contains "Android"

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 3/32

Write a middleware to help you

If you are using an OpenTelemetry SDK it is already creating a wrapping span around the request and response.

You can access it by asking for the active span at any point during the processing of the request.

let span = opentelemetry.trace.getActiveSpan();

span.setAttributes({

 "user_agent.original": c.req.header("User-Agent"),

});

However if anyone wraps any of your code in a child span the “active span” will change to be that new wrapping

span! There is no first-class way of addressing this original “main” span in OpenTelemetry. However, we can work

around this by saving a reference to this specific span in the context so we can always have access to the “main”

wrapping span.

// create a reference to store the span on the opentelemetry context object

const MAIN_SPAN_CONTEXT_KEY = createContextKey("main_span_context_key");

function mainSpanMiddleware(req, res, next) {

 // pull the active span created by the http instrumentation

 let span = trace.getActiveSpan();

 // get the current context

 let ctx = context.active();

 // set any attributes we always want on the main span

 span.setAttribute("main", true);

 // OpenTelemetry context is immutable, so to modify it we create

 // a new version with our span added

 let newCtx = ctx.setValue(MAIN_SPAN_CONTEXT_KEY, span);

 // set that new context as active for the duration of the request

 context.with(newCtx, () => {

 next();

 });

}

// create another function that allows you to annotate this saved span easily

function setMainSpanAttributes(attributes) {

 let mainSpan = context.active().getValue(MAIN_SPAN_CONTEXT_KEY);

 if (mainSpan) {

 mainSpan.setAttributes(attributes);

 }

}

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 4/32

https://opentelemetry.io/docs/specs/otel/context/

Now our annotation code can look a little simpler, and we can always know that we’re setting these attributes on

the wrapping span.

setMainSpanAttributes({

 "user.id": "123",

 "user.type": "enterprise",

 "user.auth_method": "oauth",

});

You can play around with a minimal running example here.

At Heroku we had internal OpenTelemetry Distributions that set this up for you automatically and added as many

automatic annotations as possible to these spans.

If you are not using OpenTelemetry here’s a gist that might help you get started. My previous post may help you

put this logic together.

What do I add to this “main” span?

Charity Majors
@mipsytipsy · Follow

Replying to @mipsytipsy

And how many dimensions do you plan to emit and pack
into your wide events?

MANY. Hundreds! The more you have, the better you can
detect and correlate rare conditions with precision.

As you adjust to the joys of debugging with rich context,
you will itch for it everywhere.
11:39 PM · Jan 8, 2024

2 Reply Copy link

Read more on X

We need to add attributes about the request, and there are likely far more of these than you would expect. It’s

easy to come up with a dozen or so, but in a well-instrumented code base there will be hundreds of attributes.

Note that while this is a long list, it is definitely not exhaustive. OpenTelemetry defines sets of attribute names

as Semantic Conventions that can also be used for inspiration. I have tried to follow these in my naming

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 5/32

https://github.com/jmorrell/a-practitioners-guide-to-wide-events/tree/main/opentelemetry-js-example
https://opentelemetry.io/docs/concepts/distributions/
https://gist.github.com/jmorrell/76a9ee631370e073d6e2616dc1f67feb
https://jeremymorrell.dev/blog/minimal-js-tracing/
https://twitter.com/mipsytipsy?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1744579558962336138%7Ctwgr%5E036ce3b9bbac1eddea80198f83da630ab4a5b22a%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fjeremymorrell.dev%2Fblog%2Fa-practitioners-guide-to-wide-events%2F
https://twitter.com/mipsytipsy?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1744579558962336138%7Ctwgr%5E036ce3b9bbac1eddea80198f83da630ab4a5b22a%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fjeremymorrell.dev%2Fblog%2Fa-practitioners-guide-to-wide-events%2F
https://twitter.com/mipsytipsy?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1744579558962336138%7Ctwgr%5E036ce3b9bbac1eddea80198f83da630ab4a5b22a%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fjeremymorrell.dev%2Fblog%2Fa-practitioners-guide-to-wide-events%2F
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1744579558962336138%7Ctwgr%5E036ce3b9bbac1eddea80198f83da630ab4a5b22a%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fjeremymorrell.dev%2Fblog%2Fa-practitioners-guide-to-wide-events%2F&screen_name=mipsytipsy
https://twitter.com/mipsytipsy/status/1744579558962336138?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1744579558962336138%7Ctwgr%5E036ce3b9bbac1eddea80198f83da630ab4a5b22a%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fjeremymorrell.dev%2Fblog%2Fa-practitioners-guide-to-wide-events%2F
https://twitter.com/mipsytipsy/status/1744578651080048939?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1744579558962336138%7Ctwgr%5E036ce3b9bbac1eddea80198f83da630ab4a5b22a%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fjeremymorrell.dev%2Fblog%2Fa-practitioners-guide-to-wide-events%2F
https://twitter.com/mipsytipsy/status/1744579558962336138?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1744579558962336138%7Ctwgr%5E036ce3b9bbac1eddea80198f83da630ab4a5b22a%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fjeremymorrell.dev%2Fblog%2Fa-practitioners-guide-to-wide-events%2F
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1744579558962336138%7Ctwgr%5E036ce3b9bbac1eddea80198f83da630ab4a5b22a%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fjeremymorrell.dev%2Fblog%2Fa-practitioners-guide-to-wide-events%2F&tweet_id=1744579558962336138
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1744579558962336138%7Ctwgr%5E036ce3b9bbac1eddea80198f83da630ab4a5b22a%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fjeremymorrell.dev%2Fblog%2Fa-practitioners-guide-to-wide-events%2F&in_reply_to=1744579558962336138
https://twitter.com/explore?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1744579558962336138%7Ctwgr%5E036ce3b9bbac1eddea80198f83da630ab4a5b22a%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fjeremymorrell.dev%2Fblog%2Fa-practitioners-guide-to-wide-events%2F
https://opentelemetry.io/docs/specs/semconv/

where possible.

A convention to filter out everything else

Traces contain lots of spans, so it’s helpful to have a convention for identifying and searching for these “wide

events”. root and canon were floated as options, but I’ve landed on calling them main spans.

Attribute Examples Description

main true Present only for spans designated as a “wide event”, usually wrapping a request / response, or a

background job

This convention allows you to quickly figure out “what does the traffic to this service look like?” with a

single query:

SELECT

 COUNT(*)

WHERE

 main = true

GROUP BY http.route

Service metadata

Of course we need to add some information about the service we’re running. Consider adding additional

metadata about which team owns the system, or which Slack channel the owning team hangs out in, though note

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 6/32

that this can be tedious to update if your workplace experiences frequent re-orgs. Tying these to a service catalog

like Backstage is left as an exercise to the reader.

Attribute Examples Description

service.name api
shoppingcart

What is the name of this service?

service.environment production
staging
development

Where is this service running?

service.team web-services
dev-ex

Which team owns this service. Useful for knowing who to page in during incidents.

service.slack_channel web-services
dev-ex

If I discover an issue with this service, where should I reach out?

“How many services does each team run?”

SELECT

 COUNT_DISTINCT(service.name)

WHERE

 service.environment = "production"

GROUP BY service.team

Ever look at the load on a system and then wonder “Is that appropriate for the machine this is running on?”, and

now you have to look through other tools or config files to get that information. Throw that context on the wide

event so that it’s available when you need it.

Attribute Examples Description

instance.id 656993bd-40e1-4c76-baff-0e50e158c6eb An ID that maps to this one instance of the service

instance.memory_mb 12336 How much RAM is available to this service?

instance.cpu_count 4
8
196

How many cores are available to this service?

instance.type m6i.xlarge Does your vendor have a name for this type of instance?

“What are the services with the most memory that we run? What instance types do they use?”

SELECT

 service.name,

 instance.memory_mb,

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 7/32

https://backstage.io/

 instance.type

ORDER BY instance.memory_mb DESC

GROUP BY service.name, instance.type

LIMIT 10

However you’re orchestrating your systems make sure that all of the relevant information is added. I’ve included

some examples from the Kubernetes semantic conventions for inspiration.

Attribute Examples Description

container.id a3bf90e006b2 An ID used to identify Docker containers

container.name nginx-proxy
wordpress-app

Container name used by container runtime

k8s.cluster.name api-cluster Name of the kubernetes cluster your service is running in

k8s.pod.name nginx-2723453542-065rx Name of the kubernetes pod your service is running in

cloud.availability_zone us-east-1c AZ where you’re running your service

cloud.region us-east-1 Region where you’re running your service

But even if you’re using a Platform-as-a-Service you can still pull out a lot of useful information!

Attribute Examples Description

heroku.dyno web.1
worker.3

The env var DYNO that is set on your app at runtime

heroku.dyno_type web
worker

The first part of the DYNO env var before the .. Separating this makes it easier

to query

heroku.dyno_index 1
3

The second part of the DYNO env var after the .. Separating this makes it easier

to query

heroku.dyno_size performance-m The selected dyno size

heroku.space my-private-
space

The name of the private space that your are deployed into

heroku.region virginia
oregon

Which region is this app located in?

“How many dynos are we running? What dyno types are they? For which services?”

SELECT

 COUNT_DISTINCT(heroku.dyno_index)

GROUP BY service.name, heroku.dyno_type, instance.type

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 8/32

https://opentelemetry.io/docs/specs/semconv/resource/k8s/

Build info

Inevitably some of the first questions asked in any incident are “Did something just go out?” or “What

changed?”. Instead of jumping to your deployment tool or looking through GitHub repositories, add that data to

your telemetry.

Threading this data from your build system through to your production system so that it’s available at runtime can

be a non-trivial amount of glue code, but having this information easily available during incidents is invaluable.

Attribute Examples Description

service.version v123
9731945429d3d083eb78666c565c61bcef39a48f

However you track your

version, ex: a version string

or a hash of the built image

service.build.id acd8bb57-fb9f-4b2d-a750-4315e99dac64 If your build system gives

you an ID, this context

allows you to audit the build

if something goes wrong

service.build.git_hash 6f6466b0e693470729b669f3745358df29f97e8d The git SHA of the deployed

commit so you can

know exactly which code

was running

service.build.pull_request_url https://github.com/your-company/api-
service/pull/121

The url of the pull request

that was merged that

triggered the deploy

service.build.diff_url https://github.com/your-company/api-
service/compare/c9d9380..05e5736

A url that compares the

previously deployed

commit against the newly

deployed commit

service.build.deployment.at 2024-10-14T19:47:38Z Timestamp when the

deployment process started

service.build.deployment.user keanu.reeves@your-company.com Which authenticated user

kicked off the build? Could

be a bot

service.build.deployment.trigger merge-to-main
slack-bot
api-request
config-change

What triggered the

deploy? Extremely valuable

context during an deploy-

triggered incident

service.build.deployment.age_minutes 1
10230

How old is this deploy?

Shortcuts the frequent

incident question “Did

something just go out?”

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 9/32

Won’t this be a lot of repetitive data? These values do not change except between deploys! See

Frequent Objections

“What systems have recently been deployed?”

SELECT

 service.name,

 MIN(service.build.deployment.age_minutes) as age

WHERE

 service.build.deployment.age_minutes < 20

GROUP BY service.name

ORDER BY age ASC

LIMIT 10

“What’s up with the spike of 500s when we did the last deploy?”

SELECT

 COUNT(*)

WHERE

 service.name = "api-service" AND

 main = true

GROUP BY http.status_code, service.version

HTTP

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 10/32

You should get most of these from your tracing library instrumentation, but there are usually more you can add

if, for example, your organization uses non-standard headers. Don’t settle for only what OpenTelemetry gives you

by default!

Attribute Examples Description

server.address example.com
localhost

Name of the HTTP server that received the request

url.path /checkout
/account/123/features

URI path after the domain

url.scheme http, https URI scheme

url.query q=test, ref=#### URI query component

http.request.id 79104EXAMPLEB723 Platform request id: ex: x-request-id, x-amz-request-id

http.request.method GET
PUT
POST
OPTIONS

HTTP request method

http.request.body_size 3495 Size of the request payload body in bytes

http.request.header.content-
type

application/json Value of a specific request header, “content-type” in this case,

but there are many more. Pick out any that are important for

your service

http.response.status_code 200
404
500

HTTP response status code

http.response.body_size 1284
2202009

Size of the response payload body in bytes

http.request.header.content-
type

text/html Value of a specific response header, “content-type” in this case,

but there are many more. Pick out any that are important for

your service

SELECT

 HEATMAP(http.response.body_size),

WHERE

 main = true AND

 service.name = "api-service"

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 11/32

User-Agent headers contain a wealth of info. Don’t rely on regex queries to try and make sense of them down the

road. Parse them into structured data from the beginning.

Attribute Examples Description

user_agent.original Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/129.0.0.0
Safari/537.3

The value of the HTTP

User-Agent header

user_agent.device computer
tablet
phone

Device type derived from

the User-Agent header

user_agent.OS Windows
MacOS

OS derived from the User-
Agent header

user_agent.browser Chrome
Safari
Firefox

Browser derived from the

User-Agent header

user_agent.browser_version 129
18.0

Browser version

derived from the User-
Agent header

“What browsers are my users using?”

SELECT

 COUNT(*)

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 12/32

GROUP BY user_agent.browser, user_agent.browser_version

If you have any custom user agents or headers used as a convention within your org parse that out too.

Attribute Examples Description

user_agent.service api-gateway
auth-service

If you have a distributed architecture, have

each service send a custom User-Agent
header with its name and version

user_agent.service_version v123
6f6466b0e693470729b669f3745358df29f97e8d

If you have a distributed architecture, have

each service send a custom User-Agent
header with its name and version

user_agent.app iOS
android

If a request is coming from a mobile

app, make sure it includes which app and

its version

user_agent.app_version v123
6f6466b0e693470729b669f3745358df29f97e8d

If a request is coming from a mobile

app, make sure it includes which app and

its version

Route info

We’re not done with HTTP attributes yet! One of the most important bits is the API endpoint that the request

matched. OpenTelemetry SDKs will usually give this to you automagically but not always. Consider extracting the

route parameters and query parameters as additional attributes.

Attribute Examples Description

http.route /team/{team_id}/user/{user_id} The route pattern that the url path is matched against

http.route.param.team_id 14739
team-name-slug

The extracted segment of the url path as it is parsed for

each parameter

http.route.query.sort_dir asc The query parameters that are relevant to the response of

your service. Ex: ?sort_dir=asc&...

SELECT

 P99(duration_ms)

WHERE

 main = true AND

 service.name = "api-service"

GROUP BY http.route

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 13/32

User and customer info

Once you get the basics down, this is the most important piece of metadata that you can add. No automagic SDK

will be able to encode the particulars of your user model.

It’s common for a single user or account to be responsible for a 10%+ of a business’ revenue, and frequently their

usage patterns look significantly different than the average user. They probably have more users, store more data,

and hit limits and edge-cases that will never show up for the user paying $10 / month. Be sure you can separate

their traffic from others.

Attribute Examples Description

user.id 2147483647
user@example.com

The primary ID for a user. If this is an email and you’re using a vendor, consider

your org’s policy on putting PII in external services.

user.type free
premium
enterprise
vip

How does the business see this type of user? Individual accounts are sometimes

responsible for 10%+ of a business’ income. Make sure you can separate their

traffic from others!

user.auth_method token
basic-auth
jwt
sso-github

How did this user authenticate into your system?

user.team.id 5387
web-services

If you have a team construct, which one does this user belong to?

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 14/32

Attribute Examples Description

user.org.id 278
enterprise-name

If this user is part of an organization with an enterprise contract, track that!

user.age_days 0
637

Not the user’s literal age, but how long ago was this account created? Is this an

issue experienced by someone new to your app, or only once they’ve saved a lot

of data?

user.assumed true Have an internal way of assuming a user’s identity for debugging? Be sure to

track this

user.assumed_by engineer-3@your-
company.com

And track which actual user is assuming the user’s identity

SELECT

 P99(duration_ms)

WHERE

 main = true AND

 service.name = "api-service"

GROUP BY user.type

Rate limits

Whatever your rate limiting strategy, make sure the current rate limit info gets added too. Can you quickly find

examples of users that are being rate-limited by your service?

Attribute Examples Description

ratelimit.limit 200000 You might not now, but you will likely have users with different rate limits in the

future, note down what the actual limit is for this request

ratelimit.remaining 130000 What is the budget remaining for this user?

ratelimit.used 70000 How many requests have been used in the current rate window

ratelimit.reset_at 2024-10-
14T19:47:38Z

When will the rate limit be reset next? if applicable

“This user has a support ticket open about being rate-limited. Let’s see what they were doing”

SELECT

 COUNT(*)

WHERE

 main = true AND

 service.name = "api-service" AND

 user.id = 5838

GROUP BY http.route

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 15/32

“What routes are users who have burned most of their rate limit hitting? Does this activity look suspicious?”

SELECT

 COUNT(*)

WHERE

 main = true AND

 service.name = "api-service" AND

 ratelimit.remaining < 100

GROUP BY http.route

Caching

For every code path where we could shortcut with a cache response, add whether or not it was successful

Attribute Examples Description

cache.session_info true
false

Was the session info cached or did it need to be re-fetched?

cache.feature_flags true
false

Were the feature flags cached for this user or did they need to be re-fetched?

Localization info

What localization options has the user chosen? This can be a frequent source of bugs

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 16/32

Attribute Examples Description

localization.language_dir rtl, ltr Which direction is text laid out in their language?

localization.country mexico, uk Which country are they from?

localization.currency USD, CAD Which currency have they chosen to work with?

Uptime

Tracking how long the service has been running when it serves a request can help you visualize several classes

of bugs:

Issues that show up on a reboot

Memory leaks that only start to show up when the service has been running for a long time

Frequent crashes / restarts if you have automatically restart the service on failure

I recommend also either adding the log10 of the uptime or having some way of visualizing this. When graphed

this emphasizes the important first few minutes of a service without being squished into the bottom of the graph

by instances with several days or more of uptime.

Attribute Examples Description

uptime_sec 1533 How long has this instance of your app been running? Can be useful to visualize to

see restarts

uptime_sec_log_10 3.185 Grows sub-linearly which allows you to visualize long-running services and brand new ones on

the same graph

SELECT

 HEATMAP(uptime_sec),

 HEATMAP(uptime_sec_log_10)

WHERE

 main = true AND

 service.name = "api-service"

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 17/32

Metrics

This one might be a bit controversial, but I’ve found it helpful to tag spans with context about what the system

was experiencing while processing the request. We fetch this information every ~10 seconds, cache it, and add it

to every main span produced during that time.

Capturing metrics in this way is not mathematically sound. Since you only get data when traffic is flowing, you

can’t calculate a P90 for cpu load that would stand up to any rigorous scrutiny, but that’s actually fine in practice.

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 18/32

It’s close enough to get some quick signal while you’re debugging without switching to a different tool, especially

if you can avoid calculations and visualize with a heatmap.

I wouldn’t recommend setting alerts on this data though. Plain ol’ metrics are great for that.

Jessica Kerr recently wrote about this approach on the Honeycomb Blog.

Attribute Examples Description

metrics.memory_mb 153
2593

How much memory is being used by the system at the time its service

this request

metrics.cpu_load 0.57
5.89

CPU load of the system service this request. Given as # of active cores

metrics.gc_count 5390 Last observed number of garbage collections. Could be cumulative (total since

service started) or delta (ex: number in the last minute)

metrics.gc_pause_time_ms 14
325

Time spent in garbage collections. Could also be cumulative or delta. Pick one

and document which

metrics.go_routines_count 3
3000

Number of go routines running

metrics.event_loop_latency_ms 0
340

Cumulative time spent waiting on the next event loop tick. An important metric

for Node apps

“Are these requests getting slow because we’re running out of memory or CPU?”

SELECT

 HEATMAP(duration_ms),

 HEATMAP(metrics.memory_mb),

 HEATMAP(metrics.cpu_load)

WHERE

 main = true AND

 service.name = "api-service"

GROUP BY instance.id

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 19/32

https://jessitron.com/
https://www.honeycomb.io/blog/get-infinite-custom-metrics-for-free

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 20/32

Async request summaries

When using a tracing system async requests should get their own spans, but it can still be useful to roll up some

stats to identify outliers and quickly find interesting traces.

Attribute Examples Description

stats.http_requests_count 1
140

How many http requests were triggered during the processing of

this request?

stats.http_requests_duration_ms 849 Cumulative time spent in these http requests

stats.postgres_query_count 7
742

How many Postgres queries were triggered during the processing of

this request?

stats.postgres_query_duration_ms 1254 Cumulative time spent in these Postgres queries

stats.redis_query_count 3
240

How many redis queries were triggered during the processing of

this request?

stats.redis_query_duration_ms 43 Cumulative time spent in these redis queries

stats.twilio_calls_count 1
4

How many calls to this vendors api were triggered during the processing of

this request?

stats.twilio_calls_duration_ms 2153 Cumulative time spent in these vendor calls

“Surely my service makes a reasonable number of calls to the database… right?”

SELECT

 HEATMAP(stats.postgres_query_count)

WHERE

 main = true AND

 service.name = "api-service"

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 21/32

Instead of adding this explicitly, couldn’t we aggregate this by querying the whole trace? See Frequent Objections

Sampling

Once you start collecting fine-grained telemetry from your systems at a significant scale you run head-on into the

problem of sampling. Running systems can produce a lot of data! Engineers frequently want to store and query

all of it. Exact answers always! Make it fast! Also cheap! But it’s trade-offs all the way down. Telemetry data

is fundamentally different from the transaction data you’re storing for your users, and you should think about

it differently.

Luckily you only really need a statistically significant subset of the full dataset. Even sampling 1 out of every 1000

requests can provide a suprisingly detailed picture of the overall traffic patterns in a system.

Sampling is a suprisingly deep topic. Keep it simple if you’re starting and do uniform random head sampling, but

track your sample rate per-span so you can be ready for more sophisticated approaches down-the-line.

Good tooling will weight your calculations with a per-span, so you don’t have to mentally multiple the COUNT call by

the sample_rate to get an accurate answer. Here are some relevant articles:

I was first introduced to this idea in the Scuba paper

Honeycomb supports per-event sample rates

Cloudflare’s Analytics Engine will automatically sample for you based on volume

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 22/32

https://research.facebook.com/file/2964294030497318/scuba-diving-into-data-at-facebook.pdf
https://docs.honeycomb.io/manage-data-volume/sample/sampled-data-in-honeycomb/
https://blog.cloudflare.com/explaining-cloudflares-abr-analytics/

Attribute Examples Description

sample_rate 1
500

N where 1 in N events will be sampled and stored and the rest dropped. If you’re sampling 1% of

requests, the sample_rate would be 100

Timings

I find it super useful to break up the work that gets done to respond to a request into a handful of important

chunks and track how long each segment took on the main span.

“Wait, isn’t that what child spans are for?”

Wrapping absolutely everything in its own span is the most common failure mode I see when engineers first get

access to tracing tools. You have to design the structure of your data for the way you want to query it.

Child spans are helpful for waterfall visualization for a single request, but can be difficult to query and visualize

across all of your requests. Putting that information on a single span makes it easier to query and also helps with

tools like Honeycomb’s BubbleUp which can then immediately tell you that that group of requests was slow

because authentication took 10 seconds for some reason.

Attribute Examples Description

auth.duration_ms 52.2
0.2

How long did we spend performing authentication during this request?

payload_parse.duration_ms 22.1
0.1

Identify the core workloads of the service and add timings for them

Errors

If you encounter an error and need to fail the operation, tag the span with the error information: type,

stacktrace, etc.

One approach that I have found super-valuable is tagging each location where we throw an error with a unique

slug describing the error. If this string is unique within your codebase, it is easily found with a quick search. This

allows someone to jump straight from a spike in errors on a dashboard to the exact line of code that throwing the

error. It also provides a convenient low-cardinality field to GROUP BY.

You’re unlikely to be able to wrap all possible errors, but any time a failed request doesn’t have an

exception.slug that is a good sign that you have places in your code where your error handling could be

improved. It’s now really easy to find examples of requests that failed in ways you didn’t anticipate.

if isNotRecoverable(err) {

 // note the use of a plain string, not a variable, not dynamically generated

 // consider enforcing this with custom lint rules

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 23/32

https://www.honeycomb.io/bubbleup

 setErrorAttributes(err, "err-stripe-call-failed-exhausted-retries");

 throw err;

}

Attribute Examples Description

error true
false

Special field for whether the request failed or not

exception.message Can't convert 'int' object
to str
undefined is not a function

The exception message encoded in the exception

exception.type IOError
java.net.ConnectException

The programmatic type of the exception

exception.stacktrace ReferenceError: user is
not defined
at myFunction
(/path/to/file.js:12:2)
...

Capture the stack trace if its available to help pin-point where the

error is being thrown

exception.expected true, false Is this an expected exception like a bot trying to hit a url that

doesn’t exist? Allows filtering out of exceptions we can’t prevent

but don’t need to worry about

exception.slug auth-error
invalid-route
github-api-unavailable

Create a unique grepp-able slug-value to identify the code

location of an error if its predictable during development time

“Which of our enterprise users hit the most errors last week? And which one?”

SELECT

 COUNT_DISTINCT(user.id)

WHERE

 main = true AND

 service.name = "api-service" AND

 user.type = "enterprise"

GROUP BY exception.slug

“Show me traces where we likely need to improve our error handling”

SELECT

 trace.trace_id

WHERE

 main = true AND

 service.name = "api-service" AND

 error = true AND

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 24/32

 exception.slug = NULL

GROUP BY trace.trace_id

Feature flags

Fine-grained feature flags are a developer super power that allows you to test code changes in production with

only a fraction of your users or traffic. Adding the flag information per-request allows you to compare how the new

code is working as you opt more of your traffic into the new code path. Coupled with the broad visibility you can

get with wide events, and this can make even tricky migrations vastly more manageable and allow you to ship

code with confidence.

Note that semantic conventions differ here and suggest adding feature flag information as events on the span. I

would suggest following that standard since it will ultimately have the best support from vendors if it’s moved to

stable, but especially in the mean time, I’m also putting this info on the main span.

Attribute Examples Description

feature_flag.auth_v2 true
false

The value of a particular feature flag for this request

feature_flag.double_write_to_new_db true
false

The value of a particular feature flag for this request

“What errors are the users in the new authentication flows hitting? How does it compare to the control group?”

SELECT

 COUNT

WHERE

 main = true AND

 service.name = "api-service" AND

GROUP BY feature_flag.auth_v2, exception.slug

Versions of important things

Runtimes, frameworks, and any major libraries you are using can be really helpful context.

Attribute Examples Description

go.version go1.23.2 What version of your language runtime are you using?

rails.version 7.2.1.1 Pick out any core libraries like web frameworks and track their version too

postgres.version 16.4 If you can add the versions of any datastores you’re using, even better

“A security issue with Rails just got announced. What versions of the framework are our services using?”

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 25/32

https://opentelemetry.io/docs/specs/semconv/feature-flags/feature-flags-spans/

SELECT

 COUNT_DISTINCT(service.name)

WHERE

 service.environment = "production"

GROUP BY rails.version

“Our memory usage seems higher that it used to be. Didn’t we upgrade the runtime recently? Does

that correlate?”

SELECT

 HEATMAP(metrics.memory_mb)

WHERE

 main = true AND

 service.name = "api-service"

GROUP BY go.version

Your specific application

Now we go off the map and get to the really valuable stuff. Your app likely does something unique or works in a

particular domain. You might need to really care about which professional credentials a Dentist using your app

has, or which particular storage warehouse a package is in, or which chip is in the embedded tracking device

installed in the cat that your app exists to track.

No framework is going to be able to understand what parts of your domain are important to track and automate

this for you, you have to do that.

Attribute Examples Description

asset_upload.s3_bucket_path s3://bucket-
name/path/to/asset.jpg

If you upload something, add context about where

email_vendor.transaction_id 62449c60-b51e-4d5c-8464-
49217d91c441

If you interact with a vendor, track whatever transaction

ID they give you in case you need to follow up with them

vcs_integration.vendor github
gitlab
bitbucket

If there are 3-4 types that something might fall into, be

sure to add that context. Ex: If 2% of requests start failing

because bitbucket is experiencing issues, this will help

identify the source of the issue immediately.

process_submission.queue_length 153
1

Any time you interact with a queue, see if you can get the

current length during submission

Things to note

You should probably add the thing

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 26/32

If you find yourself asking “Am I ever really going to need this bit of data?”, default to throwing the attribute on.

The marginal cost of each extra attribute is very small. If the data volume does start to grow, prefer wider, more

context-rich events and a higher sample rate vs smaller events with a lower sample rate.

Heatmaps are your friend

Honeycomb’s heatmaps are amazing at helping you find outliers, seeing multi-modal distributions, and getting a

feel for your data. I wish more tooling supported them. I am not sure I can build software without them any more.

Embrace the feedback loop

When you are modifying code, make a change to the telemetry so that you can see the impact of the new code

running. Once the code is released, check to make sure that you see the outcome you expected. Don’t hesitate to

add specific fields for one release and them remove them after.

Tighter feedback loops are like going faster on a bicycle. They make for more stable systems and let you move

faster with confidence.

Semantic conventions and naming consistency

I’ve tried to embrace semantic conventions in my naming, but would not be surprised if I’ve made multiple errors.

Naming is hard!

It’s also hard to get consistency right within an organization or even across multiple systems owned by the same

team. I would recommend trying to use semantic conventions as a guide, but do prioritize getting data out of your

system in some form and getting some early wins over exacting adherence to an evolving specification. Once this

data has proven its value within your organization, then you will have the leverage to spend engineering cycles on

making things consistent.

In the long run semantic conventions should allow Observability vendors to build new value and understanding on

top of the telemetry you emit, but this effort is only just getting started.

Frequent Objections

Does this really work??

I have done this for dozens of production systems. Every single time the data has been invaluable for digging in

and understanding what the system is actually doing, and we’ve found something surprising, even for the

engineers who had worked on the system for many years.

Things like:

Oh, actually 90% of the traffic of this system comes from one user

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 27/32

https://www.honeycomb.io/blog/heatmaps-are-the-new-hotness
https://opentelemetry.io/docs/specs/semconv/general/trace/

Wait, one of our worker processes is actually running a month old version of the code somehow?

This API endpoint usually has payloads of 1-2kb, but there is an edge case affecting one user where it’s

40+MB. This causes their page loads to be several minutes longer than the p99.

After instrumenting the authentication middleware, around 20% of requests still didn’t have user info. There

was a whole second authentication system for a different class of users that hadn’t been touched in years.

This endpoint that we’d like to deprecate accepts data in the form of A, B, and C, but none of our traffic ever

even uses C. We can just drop support for that now.

I don’t like it. This feels wrong

For anyone feeling that way now, I ask you to give it five minutes.

I find that when a log line wraps around your terminal window multiple times, most developers have a pretty

visceral negative reaction.

This feels right:

[2024-09-18 22:48:32.990] Request started http_path=/v1/charges request_id=req_123

[2024-09-18 22:48:32.991] User authenticated auth_type=api_key key_id=mk_123 user_id=usr_123

[2024-09-18 22:48:32.992] Rate limiting ran rate_allowed=true rate_quota=100 rate_remaining=99

[2024-09-18 22:48:32.998] Charge created charge_id=ch_123 permissions_used=account_write request_id=req_123

[2024-09-18 22:48:32.999] Request finished http_status=200 request_id=req_123

But this feels wrong:

[2024-10-20T14:43:36.851Z] duration_ms=1266.1819686777117 main=true http.ip_address=92.21.101.252 instance.id=ap

instance.cpu_count=4 instance.type=t3.small http.request.method=GET http.request.path=/api/categories/substantia

http.route=/api/categories/:slug http.request.body.size=293364 http.request.header.content_type=application/xml

user_agent.original="Mozilla/5.0 (X11; Linux i686 AppleWebKit/535.1.2 (KHTML, like Gecko) Chrome/39.0.826.0 Safa

user_agent.os=Windows user_agent.browser=Edge user_agent.browser_version=3.0 url.scheme=https url.host=api-servi

service.version=1.0.0 build.id=1234567890 go.version=go1.23.2 rails.version=7.2.1.1 service.environment=producti

service.slack_channel=#api-alerts service.build.deployment.at=2024-10-14T19:47:38Z

service.build.diff_url=https://github.com/your-company/api-service/compare/c9d9380..05e5736

service.build.pull_request_url=https://github.com/your-company/api-service/pull/123

service.build.git_hash=05e5736 service.build.deployment.user=keanu.reeves@your-company.com

service.build.deployment.trigger=manual container.id=1234567890 container.name=api-service-1234567890 cloud.avai

cloud.region=us-east-1 k8s.pod.name=api-service-1234567890 k8s.cluster.name=api-service-cluster feature_flag.aut

http.response.status_code=401 user.id=Samanta27@gmail.com user.type=vip user.auth_method=sso-google user.team_id

You are structuring data so that it can be read efficiently by machines, not humans. Our systems emit too much

data to waste precious human lifetimes using our eyeballs to scan lines of text looking for patterns to jump out.

Let the robots help.

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 28/32

https://signalvnoise.com/posts/3124-give-it-five-minutes

This seems like a lot of work

If you want to implement everything I’ve talked about in this post that would be a ton of work. However, even

implementing the easiest subset is going to provide a lot of value. Not doing this results in so much more work

building a mental model of your system, trying to debug by thinking through the code and hoping your mental

model matches reality.

A lot of this logic can be put into shared libraries within your org, though getting them adopted, keeping them

updated and in-sync, and getting engineers used to these tools presents a whole different set of challenges.

Many of these things could be surfaced to you by opinionated platforms or frameworks. I would love to see things

move in this direction.

Isn’t this a lot of data? Won’t it cost a lot??

First, you should compare this to your current log volume per request. I have seen many systems where this

approach would reduce overall log volume.

However storing this data for every request against your system could be too expensive at scale. That’s where

sampling comes in. Sampling gives you the controls to determine what you want to spend vs the value you receive

from storing and making that data available to query.

Realtime OLAP systems are also getting cheaper all the time. Once upon a time Scuba held all data in memory to

make these types of questions quick to answer. Now most OLAP systems are evolving to columnar files stored on

cloud object storage with queries handled by ephemeral compute which is many orders of magnitude cheaper.

In the next section I’ll show just how much cheaper.

Repeated data

“Many of these fields will be the same for every request. Isn’t that really inefficient?”

This is where our intuitions can lie to us. Let’s look at a concrete example.

I wrote a script [1] to generate a newline-delimited JSON file with a lot of the above fields and at least somewhat

reasonable fake values.

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 29/32

https://news.ycombinator.com/item?id=39531022
https://news.ycombinator.com/item?id=39531022
https://github.com/jmorrell/a-practitioners-guide-to-wide-events/blob/main/column-storage-compression/index.js

Let’s say our service is serving 1000 req/s all day and sampling 1% of that traffic. Rounding to a whole number,

that’s about a million events. Generating a million example wide events results in a 1.6GB file.

http_logs.ndjson 1607.61 MB

But we repeat the keys on every single line. Even just turning it into a CSV cuts the size by more than 50%.

http_logs.csv 674.72 MB

Gzipping the file shows an amazing amount of compression, hinting that this isn’t as much data as we

might think.

http_logs.ndjson.gz 101.67 MB

Column store formats like parquet and Duckdb’s native format can do even better.

http_logs.parquet 88.83 MB

http_logs.duckdb 80.01 MB

They store all of the data for a specific column contiguously, which lends itself to different compression

approachs. In the simplest case, if the column is always the same value, it can store that fact only once. Values

that are the same across an entire row group are incredibly cheap.

If there are 2-3 different values, it can use dictionary-encoding to bit-pack these values really tightly. This also

speeds up queries against this column.

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 30/32

https://cloudsqale.com/2020/05/29/how-parquet-files-are-written-row-groups-pages-required-memory-and-flush-operations/

DuckDB has a great writeup on this which goes into much more detail. All of the data remains available and is

easily (and quickly!) queryable.

This is hardly “big data”. Storing this on Cloudflare’s R2 for a month would cost US$ 0.0012. You could keep 60

days of retention for US$ 0.072 / month.

❯ duckdb http_logs.duckdb

D SELECT COUNT(*) FROM http_logs;

┌──────────────┐

│ count_star() │

│ int64 │

├──────────────┤

│ 1000000 │

└──────────────┘

Run Time (s): real 0.002 user 0.002350 sys 0.000946

D SELECT SUM(duration_ms) FROM http_logs;

┌───────────────────┐

│ sum(duration_ms) │

│ double │

├───────────────────┤

│ 999938387.7714149 │

└───────────────────┘

Run Time (s): real 0.003 user 0.008020 sys 0.000415

There are even in-memory and transport formats to help reduce size in memory and on the wire. OpenTelemetry is

adopting arrow for its payloads for this reason.

I found this podcast on the FDAP stack particularly helpful in understanding this space.

Couldn’t we JOIN data from multiple spans together to get this information? Query the

whole trace at once?

This is certainly possible. Honeycomb has started allowing you to filter on fields on other spans in the same trace.

However I’d qualify this as very advanced. You want to make the right thing the easiest thing, and if you make it

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 31/32

https://duckdb.org/2022/10/28/lightweight-compression.html
https://developers.cloudflare.com/r2/pricing/
https://arrow.apache.org/
https://arrow.apache.org/blog/2019/10/13/introducing-arrow-flight/
https://opentelemetry.io/blog/2023/otel-arrow
https://opentelemetry.io/blog/2023/otel-arrow
https://www.youtube.com/watch?v=dlO1cKnfWAI
https://docs.honeycomb.io/investigate/query/build/#clauses

harder to ask questions, people will simply ask fewer questions. There are already a million things competing for

our attention. Keep it simple. Make it fast.

Does this mean I don’t need metrics?

You should probably still generate high-level metrics, though I bet you will need far fewer.

Metrics are great when you know you want an exact answer to a very specific question that you know ahead of

time. Questions like “How many requests did a serve yesterday?” or “What was my CPU usage like last month?”

[1] Well… mostly Cursor wrote it

© 2024 | Jeremy Morrell

11/6/25, 9:49 AM A Practitioner's Guide to Wide Events | Jeremy Morrell

https://jeremymorrell.dev/blog/a-practitioners-guide-to-wide-events/ 32/32

https://www.cursor.com/

