
@mipsytipsy

The Paradox of Alerts
Why deleting 90% of your paging alerts can make your systems better,

and how to craft an on call rotation that engineers are happy to join.

@mipsytipsy

engineer/cofounder/CTO

https://charity.wtf
new!

“I dread being on call.”

“I became a software engineer with
the expectation that other people
would be getting paged, not me.”

“I didn’t sign up for this.”

“If you make everybody be on call, we’ll
have even fewer mothers (and other
marginalized folks) in engineering.”

“On call duty is what burned me out of tech.”

“My time is too valuable to be on call. You
want me writing features and delivering

user value, not firefighting.”

“Sometimes you just have to buy the
happiness of your users with the lifeblood

of your engineers.”

“I sacrificed MY health and sleep for 10 years
of on call duty; now it’s YOUR turn.”

“You aren’t a REAL engineer until you’ve
debugged this live at 3 am.”

(posturing, sunk cost fallacies, disrespect for sleep and personal lives, surface fixes, evading
responsibility, flappy alerts, over-alerting, lack of training or support, snobbery…)

But it doesn’t have to be this way.

There are loads of toxic patterns around on call

We can do so much better. 🥰

I am here to convince you that on call can be:

• Compatible with full adult lives & responsibilities

• Rarely sleep-disturbing or life-impacting

• The sharpest tool in your toolbox for creating alignment

• Something engineers actually enjoy

• Even … ✨volunteer-only✨

A social contract between engineers and managers

An essential part of software ownership

A proxy metric for how well your team is performing, how

functional your system is, and how happy your users are

On call is a lot of things:

A set of expert practices and techniques in its own right

A miserable, torturous hazing ritual inflicted on those too junior to opt out ?

😬 😬 😬

sociotechnical (n)

Software is a sociotechnical system
powered by at least two really big feedback loops

Software Ownership

Deploys (CI/CD)

and

If you care about high-performing teams,

these are the most powerful levers you have.

Software Ownership

Deploys (CI/CD)

and

sociotechnical (n)

is how you close the feedback loop

Software Ownership

Putting engineers on call

for their own code

in production

Software Ownership
is becoming mandatory as complexity has skyrocketed

Complexity🔥

ephemeral and dynamic,

far-flung and loosely coupled,

partitioned, sharded,

distributed and replicated,

containers, schedulers,

service registries,

polyglot persistence strategies,

autoscaled, redundant failovers,

emergent behaviors,

etc etc etc

Who should be on call for their code?
Ops teams Any engineers who have code in production.

Is this payback?? 🤔
No!! Yes, ops has always had a streak of masochism.

But this isn’t about making software engineers miserable too.

Software ownership is the only way to make things better.

For everyone.

It is possible to have…

an unhealthy system with an easy on call rotation
or a healthy system with a rough on call rotation

What you WANT is to align
engineering pain with user pain.

and then you want to track that pain and pay it down.

On call responsibility is a social contract between
engineers and managers.

Managers, your job is to make sure owning it
doesn’t suck.

Engineers, your job is to own your code.

If your manager doesn’t take this seriously,

they don’t deserve

your labor.

Quit

your

job.

The goal is not, “never get paged.”

Disruptions are part of the job definition. We can’t get rid of all the
outages and false alarms, and that isn’t the right goal.

It’s way more stressful to get a false alarm for a component
you have no idea how to operate, than to comfortably

handle a real alarm for something you’re skilled at.

Our targets should be about things we can do because
they improve our operational health.

@mononcqc — https://www.honeycomb.io/blog/tracking-on-call-health/

Any engineer who works on a highly-available

service should be willing to be woken up

a few times/year for their code.

If you’re on an 8 person rotation, that’s one week every two months

If you get woken up one time every other on call shift,

that’s 3x/year and only once every 4 months

This is achievable.
By just about everyone.

It’s not even that hard. You just have to care, and do the work.

Objections:

“My time is too valuable”

“I don’t know how to navigate production”

“I have a new baby”

“We have a follow-the-sun rotation”

“I need my sleep / it’s stressful.”

Learn! (It’s good for you!)

Whose isn’t? (It will take you the least time)

Ok fine. Nobody should have two alarms.

Lucky you! (ownership still matters)

Yeah, it is. (This is how we fix it.)

“I just don’t want to.” There are lots of other kinds of software.
Go work on one.

not-so-thinly veiled

engineering classism 🙄

Let’s make on call fun again!

1. Align engineering pain with user pain, by
adopting alerting best practices

3. Profit!!!

2. Track that pain and pay it down

Align engineering pain with user pain,
by adopting alerting best practices

No Alerting on Symptoms

Give up the dream of “predictive alerting.”
Alert only when users are in pain.

Code should fail fast and hard; architecture
should support partial, graceful degradation.

Delete any paging alerts for symptoms (like “high
CPU” or “disk fail”). Replace them with SLOs.

Service-Level Objectives

Alert only on SLO violations and end-to-end checks
which correlate directly to real user pain.

Better to spend down an SLO budget
than suffer a full outage.

Moving from symptom-based alerting to SLOs often
drops the number of alerts by over 90%.

No Flaps

Delete any flappy alerts, with extreme prejudice.

I mean it. No flaps.

They’re worse for morale than

actual incidents.

Lane Two

Nearly all alerts should go to a non-paging alert queue, for on
call to sweep through and resolve first thing in the am, last
thing at night. Stuff that needs attention, but not at 2 am.

Prune these too! If it’s not actionable, axe it.

No more than two lanes. There can be only two.

You may need to spend some months investing in moving alerts
from Lane 1 to Lane 2 by adding resiliency and chaos experiments.

Out of hours alerts

Set a very high bar for what you are going to
wake people up for. Actively curate a small list of
rock solid e2e checks and SLO burn alerts.

Take every alert as seriously as a heart attack. Track them,
graph them, FIX THEM.

Paging alerts

Should all come from a single source.
More is messy.

Each paging alert should have a link to documentation
describing the check, how it works, and some starter links
to debug it. (And there should only be a few!)

Should be tracked and graphed. Especially out-of-hours.

Alerts are *not* all created equal

Better to have twenty daytime paging
alerts than one alert paging at 3 a.m.

Better to have fifty or a hundred “lane
2” alerts than one going off at 3 a.m.

Training People

Invest in quality onboarding and training for
new people. (We have each new person draw
the infra diagram for the next new person ☺)

Let them shadow someone experienced
before going it alone. Give them a buddy.

It’s way more stressful to get paged for something you don’t
know than for something you do. Encourage escalation.

Retro and Resolve

If anything alerts out of hours, hold a retro. Can this be
auto remediated? Can it be diverted to lane two?
What needs to be done to fix it for good?

Teach everyone how to hold safe retros, and have them sit in on
good ones — safety is learned by absorption and imitation, not
lectures.

Consider using something like jeli.io to get better over time.

http://jeli.io

Human SLOs

Nobody should feel like they have to ask permission
before sleeping in after a rough on call night

Nobody should ever have to be on call the
night after a bad on call night.

If the rate of change exceeds the team’s human SLOs, calm the
fuck down.

https://www.honeycomb.io/blog/kafka-migration-lessons-learned/Link:

Managers

Managers are bad in the critical path, but it’s very good for
them to stay in the technical path. On call is great for this.

The ideal solution is for managers to pinch hit
and substitute generously.

Track that pain and pay it down

Align engineering pain with user pain,
by adopting alerting best practices

Observability

To have observability, your tooling must support high-cardinality,
high-dimensionality, and explorability.

Invest in observability. It’s not the same thing as
monitoring, and you probably don’t have it.

https://www.honeycomb.io/blog/observability-5-year-retrospective/

https://www.honeycomb.io/blog/observability-101-terminology-and-concepts/

https://www.honeycomb.io/blog/so-you-want-to-build-an-observability-tool/

Links:

Observable Code

Get a jump on the next 10 years (and evade vendor lock-in) by
embracing OpenTelemetry now.

Most of us are better at writing debuggable code
than observable code, but in a cloud-native world,
observability *is* debuggability.

https://thenewstack.io/opentelemetry-otel-is-key-to-avoiding-vendor-lock-in/

https://www.honeycomb.io/observability-precarious-grasp-topic/
Links:

Instrumentation

Instrument your code for observability,
using arbitrarily-wide structured data blobs
(or “canonical log lines”) and spans.

https://charity.wtf/2019/02/05/logs-vs-structured-events/

https://stripe.com/blog/canonical-log-lines
Links:

Metrics and logs cannot give you observability.

ODD

Instrument as you go. Deploy fast. Close the loop by inspecting
your changes through the lens of your instrumentation, and
asking: “is it doing what I expect? does anything else look weird?”

Practice not just TDD, but ODD —
Observability-Driven Development

Check your instrumentation after every deploy.
Make it muscle memory.

Shift Debugging Left

As your team climbs out of the pit of
despair, you’ll get paged less and less.

Actively inspect and explore production every day.
Instrument your code. Look for outliers. Find the bugs
before your customers can report them.

In order to stay that way, replace firefighting with active engagement.

Drowning in a sea
of useless metrics

https://deepsource.io/blog/exponential-cost-of-fixing-bugs/

The cost of finding and fixing
bugs goes up exponentially

with time elapsed since
development.

Shift Debugging Left

Retro & Resolve

Get better at quantifying and explaining the impact of work that
pays down tech debt, increases resiliency, improves dev speed — in
retention, velocity, and user & employee happiness alike.

If it’s too big to be fixed by on call, get it
on the product roadmap.

Make sure engineers have enough
time to finish retro action items.

Roadmapping

Reliability work and technical debt are not secondary to
features. Treat them just like product work — scope and
plan the projects, don’t dig it out of the couch cushions.

Use SLOs (and human SLOs!) to assert the time
you need to build a better system.

Being on call gives you the moral authority to demand change.

Test in Production

If you can’t reliably ascertain what’s happening within a few
minutes of investigating, you need better observability. This is
not normal or acceptable.

Run chaos experiments (at 3pm, not 3am) to make sure you’ve
fixed it, and consider running them continuously, forever.

Stop over-investing in staging and under-investing
in prod. Most bugs will only ever be found in prod.

Qualitative Tracking

We don’t want people to get burned out or have their time
abused, but success is not about “not having incidents”.

Track things you can do, not things you hope don’t happen.

https://www.honeycomb.io/blog/tracking-on-call-health/Links:

It’s about how confident people feel being on call, whether we react in
a useful manner, and increasing operational quality and awareness.

Ask your engineers

Qualitative feedback over time is the best way to judge eng work.

Managers

Managers’ reviews should note how well the team is
performing, and (more importantly) what trajectory they are on.
Be careful with incentives here, but some data is necessary.

Managers who run their teams into the
ground should never be promoted.

Profit!

Track that pain and pay it down

Align engineering pain with user pain,
by adopting alerting best practices

How well does your team perform?

!= “how good are you at engineering”

High-performing teams
spend the majority of their time solving interesting, novel
problems that move the business materially forward.

Lower-performing teams
spend their time firefighting, waiting on code review, waiting
on each other, resolving merge conflicts, reproducing tricky
bugs, solving problems they thought were fixed, responding
to customer complaints, fixing flaky tests, running deploys
by hand, fighting with their infrastructure, fighting with their
tools, fighting with each other…endless yak shaving and toil.

Build only what you must.

Value good, clean high-level abstractions that let you
delegate large swaths of operational burden and
software surface area to vendors.

Money is cheap; engineering cycles are not.

Operations

It is easier to keep yourself from falling into
an operational pit of doom than it is to dig
your way out of one.

Dedicated ops teams may be going the way of the dodo bird,
but operational skills are in more demand than ever. Don’t
under-invest — or underpay for them.

Investments

Decouple your deploys from releases using feature flags.

Get your “run tests and deploy” time down to 15 min or less.

Invest in autodeploys after every merge. Deploy one
engineer’s changeset at a time.

Invest in progressive deployment

🔥1 — How frequently do you deploy?

🔥2 — How long does it take for code to go live?

🔥3 — How many of your deploys fail?

🔥4 — How long does it take to recover from an outage?

🔥5 — How often are you paged outside work hours?

How high-performing is YOUR team?

There is a wide gap between “elite” teams and the other 75%.

2021 numbers

Work on these things.

Track these things.

They matter.
Deploy frequency

Time to deploy

Deploy failures

Time to recovery

Out-of-hours alerts

Qualitative polls

Great teams make great engineers. ❤

Your ability to ship code swiftly and safely has less to do with your
knowledge of algorithms and data structures,

sociotechnical (n)

“Technology is the sum of ways in which social groups construct the
material objects of their civilizations. The things made are socially
constructed just as much as technically constructed. The merging of
these two things, construction and insight, is sociotechnology” —
wikipedia

and much more to do with the sociotechnical system you participate in.

Technical leadership should focus intensely on constructing and
tightening the feedback loops at the heart of their system.

This is not just for “rockstar teams”

The biggest obstacle to operational health is rarely technical
knowledge, it’s usually poor prioritization due to lack of hope.

Occasionally, it’s shitty management.

It’s way easier to work on a high-performing team with auto-deployments and
observability than it is to work on systems without these things.

If your team can write decent tests, you can do this.

Now that we have tamed our alerts, and switched to SLOs…

Now that we have dramatically fewer unknown-unknowns…

Now that we have the instrumentation to swiftly pinpoint any cause…

Now that we auto-deploy our changes to production within minutes…

Now that night alerts are vanishingly rare, and the team is confident

So, now that we’ve done all that…

“I’m still not happy. You said

I’d be HAPPY to be on call.”

If you are on call, you are not to work on
features or the roadmap that week.

If you were on call this week, you get next Friday off.
Automatically. Always.

You work on the system. Whatever has been
bothering you, whatever you think is broken …
you work on that. Use your judgment. Have fun.

this is your

 20% time!!

the goodies

When it comes to work, we all want

Autonomy,
Mastery,

Meaning.

It helps to clarify and align incentives. It makes users truly, directly happy. It increases bonding
and teaminess. I don’t believe you can truly be a senior engineer unless you’re good at on call.

The one that we need to work on adding is autonomy…and not abusing people.

On-call can help with these.

I’m of mixed mind about paying people for being
on call. I mostly think engineers are like doctors:
it’s part of the job. With one big exception.

If you are struggling to get your engineers the time they need
for systems work instead of just cranking features,

you should start paying people a premium every time they are alerted out of
hours. Pay them a LOT. Pay enough for finance to complain. Pay them until
management is begging you to work on reliability to save them money.

If execs don’t care about your people’s time and lives, convert
it into something they do care about. ✨Money✨

The End ☺

Charity Majors

@mipsytipsy

