¥
'

The Paradox of Alerts

Why deleting 20% ot your paging alerts can make your systems better,
and how to craft an on call rotation that engineers are happy to join.

o

@
.. @mipsytipsy
@@ Noneycomo.io

MIPSYtipsy
engineer/cotounder/CTO
https://charity.wtf

OREILLY

Observability
Engineering

OREILLY"

Database
Reliability
Engineeri

DESIGNING AND OPERATING Al
RESILIENT DATABASE SYSTEMS

Laine Campbell & Charity Majors

© @ NONEyCcomMo.io

“| dread being on call.”

“| became a software engineer with
the expectation that other people
would be getting paged, not me.”

“I didn’t sign up for this.”

“My time is too valuable to be on call. You
want me writing features and delivering
user value, not firefighting.”

“On call duty is what burned me out of tech.”

“If you make everybody be on call, we’ll

have even fewer mothers (and other
margmallzed folks) in engineering.”

“Sometimes you just have to buy the
happiness of your users with the lifeblood
of your engineers.”

“| sacrificed MY health and sleep for 10 years
of on call duty; now it’s YOUR turn.”

“You aren’t a REAL engineer until you’ve
debugged this live at 3 am.”

JJJJJJJJJJJJ

v B B oo osee000y
JJJJJJJJJJJ
D000 202, 000 000 LEIEPEILILILIL
0000 4 Boececes B e0e00000000000

v o \.) L) \.) - _)JJ JJJJJJJJJJJJJJJJ

JJJJJJJJJJJJJJJ

050505959
isest2eY
o2

s
05 ®
’ %%

(posturing, sunk cost tallacies, disrespect tor sleep and personal lives, surtace fixes, evading
responsibility, flappy alerts, over-alerting, lack of training or support, snobbery...)

But to be this way

We can do so much better. &

can be:

e Compatible with full adult lives & responsibilities
e Rarely sleep-disturbing or lite-impacting
e The sharpest tool in your toolbox tor creating alignment

e Something engineers
e Even. it ORI

% SOFTWARE
ETWGms&n

On call is a lot of things:

An essential part of
A social contract between engineers and managers

A set of expert practices and technigues in its own right

A proxy metric for how your team is performing, how
functional your system is, and how your users are

A miserable, torturous hazing ritual inflicted on those too junior to opt out ?

Software Is a sociotechnical system

powered by at least two really big feedback loops

goals
Why what matters matters.
What matters. y purposes
Why is it doing that? How should this work? ' risks
What needs to change? What'’s it doing? What s 1
individuals have VVhat does it mean? What does_\VE mean? Wh4 observing
unique models -..._.___._ "N Na PN { ti
) of the “system” T s :_' ' . p e inferring Cognltlon
| $) > ' anticipating 1
above e . \ planning actions
the line : = v oubleshooting interactions
diagnosing speech
correcting gestures
clicks
. RN signals
[Adding stuff \ /[architectural \
| | totherunning | | &structural |
) R /) _ faming |
.) e — el - representations
encapsulation
~ tools
‘ 7
5 P00 g below : A artifacts
- o8 : the line , | | | desorptions T OY ST extomaly souced
dl w)')j‘; > 24 > ’r, internally sourced ciod'e i. gotger:zé SB)CC
4 _)J © — J‘ 4 o (test Y results "5 o delvery "esults
4))‘ ,6\4)\),_ | - N technology
8 0L J p /") ' »s;cripts;.) \ stack
e o S bositories
the using a el
world Ll ;’J
|>
Copyright © 2016 by R.l. Cook for ACL, all rights reserved
- Yt >

If you care about teams,
these are the most powerful levers you have.

SoftwWare Ownérship
and

‘Deploys (CI/CD) Baibabih

Effort
Fulcrum

goals

o o . Why what matters matters.
What matters y atters matters pUOSeS
Why is it doing that? How should this work? . risks
What needs to change? What'’s it doing?

individuals have WVhat does it mean? What does it mean? 3 observing

unique models ... ~ 1+

of the “system” Ty Tl inferring Cognltlon

anticipating T

above ‘ : i planning actions

o
the line U oubleshooting interactions
_ diagnosing speech
i gestures
— — = ifyi clicks
ingetat O\ p— i signals

[: Adding stuff 1\ / "architectural \

| totherunning | \‘ &structural |

\ system J/ _ framing /
. _

representations

macro

below _ | artifacts
the Iine ‘ descriptions . :

positories |

the using L

world

is how you close the feedback loop

4

s becoming mandatory as complexity has skyrocketed

ephemeral and dynamic,
far-tlung and loosely coupled,

Seg Scientific Graph
Pa gulilelal=te 55 harded) infrastructure & storage complexity

over time

distributed and replicated,
containers, schedulers,
service registries,
polyglot persistence strategies,
autoscaled, redundant tailovers,
emergent behaviors,
etc etc etc

Who should be on call for their code?
Opsteams who have In production.

Is this payback?? @

No!! Yes, ops has always had a streak of masochism.
But this isn't about making software engineers miserable too.
Software ownership is the only way to make things better.
For everyone.

lt IS possuble to have

44} %’ $@

° an unhealthy system with an easy on call rotation ¢

N .

“rora system with a rough on call rotation-#

ﬁfrWha\t you WANT is to allgnﬂ%
endineering pain with user p&in.

ahd then you want to track that pain and pay it dowh.

%t o L X s

On call responsibility is a social contract between
engineers and managers.

Engineers, your job is to own code.

Managers, your job is to make sure
_ doesn tsuck.

3

If your manager doesn’t take this seriously,

they don’t deserve
your labor.

Quit
your

The goal is not, never get paged.”

Disruptions are part of the job definition. We can't get rid of all the
outages and false alarms, and that isn't the right goal.

't's way more stresstul to get a false alarm for a component
you have no idea how to operate, than to comfortably
handle a real alarm for something you're skilled at.

Our targets should be about things we can ¢ o because
they improve our operational health.

@mononcqc — https://www.honeycomb.io/blog/tracking-on-call-health/

Any engineer who works on a highly-available
service should be willing to be woken up
a [for their code.

*If you're on an 8 person rotation, that's one week every two months

* It you get woken up one time every other on call shift,
* that's 3x/year and only every

This Is achievable.

By just about everyone.

* ' [t’s ngeven that hard. You just have to care, and do the work.

not-so-thinly veiled

engineering classism @ 0 bj ecti ons:

N\,

\/,, L.y o 1/
My time is too valuable

"l dont know how to navigate production”
"I have a new baby”

"We have a follow-the-sun rotation”

"I need my sleep / it's stresstul.”

“| just don't want to."

Let’s make on call fun again!

1. Align with o)
adopting

2. Track that pain and pay it down

3. Profit! !

Align engineering pain with user pain,
by adopting alerting best practices

THAT WHICH
DOES
NOT
KILL US

OF ONE-OFFS

MAKES US FRAGILE AND FULL
i 4\

No Alerting on Symptoms

Delete any paging alerts tor (like “high
CPU" or “disk fail”). Replace them with SLOs.

Give up the dream ot "predictive alerting.”
Alert only when users are in pain.

= % .
e

' i b8 eussteiiisy ﬂ i : % ‘ =
Code should tail fast and hard; architectures
should support partial, graceful degradation.

Service-Level Objectives

Moving from symptom-based alerting to SLOs often
drops the number of alerts by

Alert only on SLO violations and end-to-end checks

which correlate directly to

o S
Better to'spend down an SLO gud)get‘
than sufter a tull outage.

Delete any flappy alerts, with extreme prejudice.

| mean it. No tlaps.

i They're worse for morale than

| SRECEE s : :
k.. = & 'actwal incidents.

- ' et Set e :
e B galalsl T g

Lane Two

Nearly all alerts should go to a non-paging alert queue, for on
call to sweep through and resolve first thing in the am, last
thing at night. Stuff that needs attention, but not at 2 am.

Prune these too! It it's not actionable, axe it.

You may need to spend some months investing in moving alerts
from Lane 1 to Lane 2 by adding resiliency and chaos experiments.

No more than two lanes. There can be‘only two.

Out of hours alerts

Set a for what you are going to
wake people up for. Actively curate a small list of
rock solid e2e checks and SLO burn alerts.

Take every alert as seriously.as a heart attack. Track them,
graph them, FIX THEMs

Paging alerts

Should all come from a single source.
More Is messy.

Each paging alert should have a link to documentation
describing the check, how it works, and some starter links

to debug it. (And there should only be a few!)

Should be tracked and graphed. Especially out-ot-hours.

Alerts are *not™ all created equal

Better to have daytime paging
alerts than one alert paging at 3 a.m.

Better to have lifty or a "lane
2" alerts than one going off at 3 a.m.

Training People

Invest in quality onboarding and training for
new people. (We have each new person draw

the infra diagram for the next new person @)

Let them shadow someone experienced
before going it alone. Give them a buddy.

't's way more stresstul to get paged for something you don't
know than for something you do. Encourage escalation.

Retro and Resolve

Teach everyone how to hold safe retros, and have them sit in on
good ones — safety is learned by , Not
lectures.

f anything alerts out of hours, hold a retro. Can this be
auto remediated? Can it be diverted to ?
What needs to be done to | ?

Consider using something like to get better over time.

http://jeli.io

Human SLOs

Nobody should ever have to be on call the
night after a bad on call night.

Nobody should feel like they have to ask permission
before sleeping in after a rough on call night

f the .rate ot change exceeds the team’shuman SLOs, calm the
fuck down.

Lin |(: https://www.honeycomb.1o/blog/kafka-migration-lessons-learned/

Managers

Managers are bad in the critical path, but it's very good for
them to stay in the . On call is great for this.

The ideal solution is for managers to
and - generously.

.

or live a:lile

Alignh engineering pain with user pain,
by adopting alerting best practices

Track that pain and pay it down

Observability et I

Invest in observability. It's not the same thing as

monitoring, and you probably don't have it.

To have observability, your tooling must support ,
high-dimiénsionality, and

https://www.honey@omb.10/b10g/observab1Iity—l@l—term1nology—and—concepts/
[_hql(s; https://www.honeycomb.io/blog/observability-5-year-retrospective/

https://www.honeycomb.io/blog/so-you-want-to-build-an-observability-tool/

Observable Code

Most of us are better at writing debuggable code
than observable code, butin a cloud-native world,
observability *is* debuggability.

Get a jJump on the next 10 years (and evade vendor lock-in) by

et

embracing Semelly mow. Lt

https://thenewstack.1o/opente1eMetFy—ote1¥1s—key—to—av01d1ng—vendor—lock—in/

Links:

https://www.honeycomb.io/observability-precarious-grasp-topic/

-»\

, “;;l.
.4,)1
e

smuru
9oux i-"?e I

Instrumentation

Metrics and logs cannot give you

Instrument your code for observability,
using data blobs
(or “canonical log lines”) and

o

| eseggg s i %

https://char1ty.wtf/2®i9/62/@5/1bgs—vs—structured—events/

Links:

https://stripe.com/blog/canonical-log-lines

ODD
Practice not just TDD, but ODD —

Observability-Driven Development

Instrument as you go. Deploy fast. Close the loop by inspecting
your changes through the lens ot your instrumentation, and
asking: “ e ?’does anything else look weird?”

5
et

: ¢ P B oissasass : 3&’1 . i
Check your instrumentation after évery deploy.
Make it muscle memory. |

0DD

N a®

S h ift D e b u g g i n g Left ‘. 0: ufﬂfi :emcs

v
As your team climbs out of the pit ot SR

despair, you'll get paged less and less.

In order to stay that way, replace with active engagement.

Actively inspect and explore pnoduc:’uon every day.
Instrument your c:ode Look for outliers. Find the bugs
before your customers can report them.

.y Undeployed software

Shift Debugging Left > ages like fine milk.

Relative cost to fix bugs,
based on time of detection

The cost of tinding and tixing
bugs goes up
with time elapsed since
development.

https://deepsource.io/blog/exponential-cost-of-fixing-bugs/

Retro & Resolve

f it's too big to be fixed by on call, get it
on the product roadmap.

Make sure engineers have enough

Uﬁﬂ?@m@l@

time to finish retro action items.

Get better at quanti’fyingjgand explainingithe impact of work that
pays down te , increases resilfency improves ~in
retention, velocity, and user & employee happiness alike.

Roadmapping

Reliability work and technical debt are not secondary to
features. Treat them just like product work — scope ana
olan the projects, don't dig it out of the couch cushions.

Use SLOs (ana 1) to assert the time
you need to build. a better system.

Being on call gives you the moral authority to demand change.

Test in Production

Stop over-investing in staging and under-investing
in prod. Most bugs will only ever be found in prod.

Run chaos experiments (at 3pm, not 3am) to make sure you've
fixed it, and consider running them continuously, forever.

e
.

If you can't reliablye ascertain whats happening within a tfew
minutes of investigating, you need better ebservability. This is
not normal or acceptable.

Qualitative Tracking

Track things you can do, not things you hope don’t happen.

We don't want people to get burned out or have their time

/]

abused, but success is not about ”

t's about how contident people teel being on call, whether we react in
a useful manner, andiincreasing operational guality and awareness.

Lin |(S: https://www.honeycomb.io/blog/tracking-on-call-health/

Ask your engineers

Qualitative feedback over time is the best way to judge eng work.

¢, thoughts?

Do you consider yourself more of a platform engineer, product engineer or telemetry engineer (currently)?
What percent of your time **in the past 30 days** have you spent on work you planned to do vs work that was unplanned?

Which best describes the unplanned work?

a task | thought was a pebble turned out to be a boulder
| was bitten by an undocumented and undiscoverable dependency

debugging and reproducing obscure software interactions or bugs

writing the code wasn't so bad, but shepherding it through code review was painful

code review wasn't so bad, but my PR was open pending review for ages

| needed to make a change to one component, but it ended up touching many more than expected
on-call escalations

fixing user-reported bugs

How often in the past quarter have you ended a project having created more technical debt than you removed?

Managers

Managers' reviews should note how well the team is
performing, and (more importantly) what they are on.
Be caretul with incentives here, but some data is necessary.

Managers who run their teams into the
¥ grourid sheuld never be promoted.

Aligh engineering pain with user pain,
by adopting alerting best practices

Track that pain and pay it down

Profit!

How well does your team perform?

= “how good are you at engineering”

High-performing teams

spend the majority of their time solving ,
that materially forward.

Lower-performing teams

spend their time tirefighting, waiting on code review, waiting
on each other, resolving merge conflicts, reproducing tricky
bugs, solving preblems they thought were fixed, responding
to customer complaints, fixing flaky tests, running deploys
by hand, fighting with their infrastructure, fighting with their
tools, fighting with each other...endless yak shaving and toil.

Build only what you must.

Value good, clean high-level abstractions that let you
delegate large swaths of operational burden anad
software surface area to vendors.

, engineering cycles are not.

adad %) o

J @l@&@?}

Q= {

i@m@m@m@
PAWANT &

s ' M.‘m

Operations

ﬂs ; T w.n’“ni‘sﬁ-

/,.\j.""

: ‘
2 \
‘R X,

't is easier to keep yourselt from talling into
an operational pit of doom than it is to dig

your way out of one.

Dedicated ops teams may be going the way ot the dodo bird,
but - aréin more demand than ever. Don't

under-invest — or underpay for them.

Investments

Decouple your deploys from using feature flags.
Get your “run tests and deploy” time down to

Invest in after every merge. Deploy one
enginger's changeset at a time:

Invest in prlogresgl\(g__d&ep\o'ymen%c}, E

.

How high-performing is YOUR team?

7 1
‘ State of DevOps

ACCELERATE

&2 - How long does it take for code to go live?

&3 — How many of yolr dep\oys fail?

Nicole Forsgren, PhD
Jez Hu mbI and G K Im
with forewords by Martin Fowler and Courtney K s

&4 — How long does it take fo rekover from an outage?

&5 - How Oﬁ?énk,qre‘gyou"paged‘@ntsidte work hours?

-.)—_o—,' : O Cate slal
sseltelalalalelsl o jsials) s oY b
-3

There is a wide gap between “elite” teams and the other 75%.

Softy

oD
Fort

often
or relé

more frequent faster lead time
code deployments from commit to deploy

2 Le

For t
IS you
to go

, Yes, you read
In pro

correctly.
This is not an
editorial error.

@ Ti

For t
Iong q
servic
(e.qg.,

A C

For th

perce . .
result lower change failure rate faster time to recover

?er;er (changes are % less likely to fail) from incidents

o o&o
R
Work on these things.

. Track these things. 0
. They matter. -

Deploy trequency
Time to deploy
Deploy failures

Time to recovery
. Out-of-hours alerts .

Quahtatlve polls) _
T ek g AT

“Great tea

\

\ Wi

PIO.@.T. 0.8

AN

\

\1;?,55‘“\“tj_

o AN

{

L
&

(

J

>
)
)
=3
S,
S
)
®
I

(T DIP.TIP.0

N

"‘:,,‘J‘’J:;"/i IJj‘-)JJJ’)J)JJJ_)J_)J)J)JJJJJJJ)JJJ)J)JJJ)J)J)JJJ)J)JJJ)J)J)J)JJJ)J)J)JJJ)JJJ_)JJJJJJJ)J—)J_)JJJ
;JJj'j;ijZﬁrﬁijjij)ij)j)j)ijJﬁJijJijJijJj)j)jJj)ijJj)j)j)ﬁ)j)j)j)j)J))))JJ)j)j)ijJj)j)j)J
O B b 0 0 00568 6282626 8262626282626 262626262626 26 26 28 26 26 26 26 26 26 08 > 6 HIGIGIGIGIIIS I
){JJJ)JJ)J)JJ)))J)JJJJ)JJJ) 5202026200000 0260020202628 20 20 o e e 2o oot 026%8) 2828 800 0008
O OO O O O B OO O OO ~ STO 0 O BT0 OO 0O O 00 0000 OO0 00 0 9 OO OO OO OOTE
50 e 000008 0 80606000°0-600,0 8000000000000 0000000, 0000600.62626°6°000 00000680280
80808080608 2600000026000600 3P 0060600000606 000002082606 0000000000600562008
8 00o0800082006000056202000 3 060005000 00000,000002620.65020°020.820.
2329233032333 NS = j IIIIRPIIIINIFIF IS5
G, tesseesssssasessoesssssess Seosssssesesssenesssesesses
. ,Jajqquﬂg I 00000005020000000030000606!
3 "'or d d ‘s
@ 9
' I
9505%6%6

2959,
85008000
egeges0s
o
3
A 0 0,02
IRIIIINITITIII L
PSPPI FIGIG I IS IS
©.0.0.9,0.0.9 .88
\)\) JJJ S J_).)_)J_)_' ‘

9, SIS \
eSesess: jqj)j)ijJL RS
00e0,0,8 0 8.8 ¢ PP

{ Jﬂ)&)%ﬂﬂﬂﬂﬁ%f >3
" JJ))JJJJJ _))J)JJJ4’J,_) -
® ‘)JJJ‘)J‘)))‘)J,)l,,“,r
’.‘» S, ‘)J)‘)J)’:J <)”} i;-
) ' 8,8 0 B
® 526 8 b
§)=)j)JJ J) J
Seb Sstusuts
Sege Sog8 o
! ‘{)‘/ D@ B
"“s)~ I
‘s‘ j)JJ O
ig D ijjif
3333233)) ‘55§. ve
ngquJ') % S5
\-)\)) \)\.)\) ¢ \ J“‘ JI A‘/
009502000000 ¢ 33
J\‘;J:))?))jg \)‘)' sg‘s‘s PO
)2 < D,
85%6%6%6°%6%6% 126°%% %

\
L
(

= . v 1...H i 02656 5 P ®e%e 0% 00" "l oo e e 0 0 0 0 0 0 0 0 ’\):)\J—j:)j:)j\)j:)j:)j:)j:)j:)j:)j j)}v) j) 17
o . : KPR P I
28 P PP I
® o S0 9
v ‘J)

OO
C

(@
ViL

& O G

AN A g
VFPIUV.UP.9.0.0.0.@
A

A A A A A PP P Pl Pl Pl L VL PLPL Pl DL L S WL Pl DL PLPL DL WL

OO IO OIS

J)ngjg'
82820050206
020080 ,0,8
0050 0 0 8000
IIILILIIS
) \
5 I3
J J
FEIIIS
P PC RS P S)
2IFIIIIS
23N
>
J

J).)JJ@ L0 0 0y ®) 80y
0.0,0 W22 2 4
B D D D D D D B Y)
33303930
) -) ¢ ,J‘) =

s
o
33

)]
D)
)
J

o
252850,
LI
B0 00

By O B
050000,

Your ability to ship code swiftly and safely has less to do with your
knowledge of algorithms and data structures,

and much more to do with the sociotechnical system you participate in.

Technical leadership should focus intensely on constructing and
tightening the feedback at the heart of their system.

“Technology is the sum of ways in which social groups construct the
material objects of their civilizations. The things made are socially
constructed just as much as technically constructed. The merging of
these two things, construction and insight, is sociotechnology” —
wikipedia

o

star teams”

This is not just for “rock

The biggest obstacle to operational health is rarely technical
knowledge, it's usually poor prioritization due to lack of hope.
Occasionally, it's

't's way to work on a high-performing team with auto-deployments and
observability than it is to work on systems without these things.

't your team can write , YOu can do

S0, how that we ve done all that...

Now that we have our alerts, and to SLOs. ..
Now that we have dramatically fewer
Now that we have the instrumentation to swiftly pinpoint any cause...
Now that we auto-deploy our changes to production within minutes. ..

Now that night alerts are vanishingly rare, and the team is conjig

the goodies

f you are on call, you are not to work on
features or the roadmap that week.

You work on the system. Whatever has been

this is your
20% time!!

bothering you, whatever you think is broken ...
you work on that. Use your judgment. Have tun.

f you were on call this week, you get next Friday off.
Automatically.

When it comes to work we all want

Autonomy,
e e T
% =
.

#

e.

. he‘lpwnth thes
» *

't helps to clarity and align mcentlves-lt makes users.:cruly dlrectly happy 't increases bonding

* Cﬁﬁ-‘&all c ‘

and teaminess. | don’t believe you can truly be a senior engineer unless you're good at on call.

The one that we need to work on adding is autonomy...and not abusing people.

-\
~

I'm of mixed mind about paying people for being
on call. | mostly think engineers are like doctors:
it's part of the job. With one exception.

f you are struggling to get your engineers the time they need

for systems work instead of just cranking tfeatures,

you should start paying people a every time they are alerted out of
hours. Pay them a LOT. Pay enough for finance to complain.
begging you to work on reliability to save them money

't execs don't care about your people’s time and lives, convert
it into something they do care about. "+ Money*

Are you too busy to improve?

S

\."

We are
too busy

The End &

Charity Maj"ors

NS
/ N
N
N,
/ N
f
b ' b
\l
(’4 \
/'. \I
O — ",
G
\ N\
~ / ®
‘.r
: .
4
\ /

@mipsytipsy

